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Abstract

We investigated the relationship between learning style and programming
achievement in two paradigms: imperative (C) and functional (Scheme). Learning style
was measured by the Kolb LSI; achievement was measured by programming course
grades. Success in one course highly correlated with success in the other, regardless of
language used. Though difficult to discern from this larger effect, small effects from
learning style were enough to suggest further research.

Background

The development of programming languages and methods, and the
teaching of them, have up to now hardly been linked to a psychological
study of the activity of programming, and this can account for certain
failures...psychology must go beyond the procedural aspect of
programming; it must take into account those other styles which, even if
they are not new, are becoming more and more important nowadays
due to the variety of applications and the training that programmers
receive (Hoc et al., 1990).

Teaching programming is a challenge given the variety of languages used and the
controversies surrounding their appropriateness for education. Study of the language-
learning process is necessary to understand how the process can be improved. In this
study, the possible connection between learning style and achievement in two
programming styles is explored.

Theories of Learning Styles

Much educational and psychological research has been devoted to learning styles.
Some troubles in teaching have been attributed to a mismatch between the structure of
schooling and the peculiarities of how an individual learns. Studies have shown that
students with particular learning styles perform better in different environments (Dunn
et al., 1989). Wu (1993) states, "Individual styles ... not only result in preferences for
different modes of presentation of learning materials and of analogies, but also lead to
individual differences in the organization of semantic knowledge."

Learning style is a nebulous concept; definitions range from the simple, "how a
student learns and likes to learn" (Keefe, 1988), to the precise notion of a...

... composite of characteristic cognitive, affective, and physiological
factors that serve as relatively stable indicators of how a learner
perceives, interacts with, and responds to the learning environment. It is
demonstrated in that pattern of behavior and performance by which an
individual approaches educational experiences. Its basis lies in the
structure of neural organization and personality (Keefe, 1988).

Early learning style theories, based on behaviorism, shifted from the simple
stimulus/response model to internal cognitive factors. Jung influenced the theory,
classifying people into four types: thinkers, feelers, sensors, and intuitors (Bokoros et al.,
1992). Later work in the 1970s, by Gregorc, identified four learning characteristics:
concrete, abstract, sequential, and random. He paired these, ending up with four
learning style types (AASA, 1991).

Kolb developed a model of learning also based on four stages: concrete experience,
reflective observation, abstract conceptualization, and active experimentation. Within
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each stage people learn respectively by feeling, observing, thinking, and doing. Scores on
these scales can be used to find a single type describing a person's learning style: either
accommodator, diverger, converger, and assimilator (Kolb, 1985).

Each type tends toward a certain kind of career, Kolb asserts. Convergers are "best at
finding practical uses for ideas and theories." Divergers see situations from many points
of view, and are good at idea-generation and imagination. Assimilators are logical,
working well with abstract ideas. Accommodators prefer working with people and
learning from experiences. These learning styles have implications for tailoring
education to the needs of the student (Almstrum and Wu 1993).

Computer Programming Paradigms
An imperative language, including C, Pascal, and FORTRAN, "achieves its effect by

changing the value of variables by means of assignment statements" (Wilson & Clark,
1993). These commands update variables held in storage (the Latin "imperare" means
"to command"), a process known as "side-effect." Imperative languages use sequence,
selection, and iteration, making them very efficient for execution of programs on von
Neumann architecture. This is true especially of C, a high-level language, designed to
behave like a low-level language for flexibility and efficiency (Wilson & Clark, 1993).

Functional languages, such as LISP and its derivative Scheme, rely on evaluation of
expressions rather than side-effects. The input-to-output conversion simply uses
expressions, functions, and declarations without variables; though some functional
languages (e.g., Scheme) rely on side effects for certain functions. Such programs are
controlled recursively rather than iteratively.

While there are other paradigms (e.g., logic and object-oriented), imperative and
functional languages (respectively, C and Scheme) are the focus of this study.

Learning Styles and Computer Programming
Programming aptitude has been measured (e.g., an IBM test focused on general verbal

and spatial abilities and mathematical reasoning); but it is unclear how well this predicts
performance in programming tasks (Palormo, 1964; Tromp, 1989). There are relations
between mathematical (e.g., measured by the SAT) and programming ability, but they
largely disappear after factoring out general ability (Tromp, 1989). As recently as the
1970s, aptitude for programming jobs was assessed by these tests (Luftig, 1975);
nowadays, however, an understanding of how people learn different computational
models is necessary to accommodate the present diversity of languages.

There is a need for investigating how the ways people learn, not just aptitude, may
influence productivity in various programming languages (Hoc et al., 1990).

There are many ways to do research on programmers, but the discipline
of controlled psychologically-oriented experiments produces reliable and
authoritative results....A major research project to investigate the impact
of programming language design on productivity and error rates and to
develop an understanding of the cognitive processes in programming
could have a dramatic influence on future programming languages
(Soloway & Iyengar, 1986).

Indeed, once we better understand how people learn to program and fare in different
programming environments, new languages could be designed to make better use of
human abilities.

Mayer has suggested that difficulties some students have is that learning programming
involves a great deal of precision-intensive problem solving. In some cases, the students
have what he calls a "fragile knowledge of domain": students have trouble applying their
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own knowledge effectively to the problem at hand. There are also problems with
confidence in abilities and feelings of control or mastery; and he has found that a
structured approach works better than letting students discover concepts on their own
(Mayer, 1988).

Van Merrienboer explored more directly the relationship between learning style and
success in programming with two studies on the specific reflection-impulsivity cognitive
style dimension. Reflectives tend to spend more time examining problems, while
impulsives prefer to jump into the middle and are less systematic in gathering
information. He found that the reflectives performed better at comprehension of
programs; and so he investigated ways to get impulsives to move to a more reflective
strategy. Having impulsives do coding assignments that require the generation of new
programs is more effective, while reflectives benefit from completing partial programs
(van Merrienboer, 1988, 1990).

Kagan found a link between personality and achievement in programming:
"Significant correlations obtained between personality scales and achievement were
computed after variance attributable to inherent aptitude was removed" (Kagan, 1988).
She also found "among both males and females, achievement in FORTRAN was
significantly related to a tendency to organize information analytically"; and she noticed
a tendency of successful students to be "compulsive," "perfectionist," and "attentive to
detail" (Kagan, 1988).

Two of Piaget's stages, concrete operational and formal operational, were the subject
of a study conducted by Hudak and Anderson. They investigated whether level of
cognitive development and learning style, as measured by the Kolb, were related to
success in Statistics and Computer Science (CS) courses. Hypotheses were confirmed
that people with more cognitive development, having reached the formal operational
stage, would have the tools needed to understand those concepts and that more abstract
learning styles helped with achievement (Hudak & Anderson, 1990).

Foreman found correlations between program understanding and the cognitive
characteristics of field independence, reasoning, and direction following: "alternate
instructional approaches would help different cognitive styles and aptitudes, to learn
programming skills more quickly and effectively" (Foreman, 1990).

In other studies, word problem and algebra skills aided in computer programming but
group learning of programming did not differ from individual learning (Shute, 1991;
Webb et al., 1986).

The present study is perhaps closest in spirit to Wu's in which cognitive learning style,
as described by Kolb, was correlated with novice learning of recursion. That study
demonstrated that "novice programmers with abstract learning styles performed better
than those with concrete learning styles when learning recursion" (Wu, 1993); the
concrete conceptual model was likened to a "glass box," the abstract conceptual model
to a "black box," with respect to awareness of the underlying machine.

Thus, in the present study, certain results could be anticipated. Since programming in
the functional language Scheme is replete with recursion (and black-box functionality),
one would expect success to be associated with an abstract learning style. And the
closeness of the procedural C language to the von Neumann machine ("glass box")
would suggest correlation with a concrete learning style.

5
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Procedure

Subjects

Subjects were undergraduate CS students at Trinity University, a small private liberal
arts institution in Texas. Most were sophomores or juniors; most had taken introductory
CS courses at Trinity. Thirty-two subjects were selected from the courses in Functional
Language Programming, Assembly Language Programming, and Formal Languages,
giving a range both in age and background. All students were assumed to have taken CS
311-312 (Problem Solving and Algorithm Design I, II) and CS 316 (Functional Language
Programming).

Method

Each subject received a packet containing a consent form, a sheet for grades, and a
copy of the Kolb LSI for self-administration. The grade sheet was to be used for
confidentially recording grades in three courses: CS 311-312 (C) and CS 316 (Scheme).
The advisor for this project recorded grades and removed the consent forms before data
were transferred to the student researcher; thus the data were anonymous.

Means and standard deviations of grades were calculated for each course, and grades
for each student were standardized into a 4.0 scale (by subtracting the class mean from
each grade and dividing by the standard deviation) to facilitate comparison across
classes. Scores from the Kolb LSI were translated to percentiles. The resulting
standardized numbers were used as data points in the statistical analysis. Course grades
were collected for three classes, CS 311, CS 312, and CS 316, but only grades in CS 312
and CS 316 were used in the analysis. CS 311 grades were deleted for three reasons:

1. Students in CS 312 and 316 would have prior experience in programming, CS
311 students might not.

2. Some students in CS 311 had been taught with Pascal, others with C; they were
not distinguished in the data collection.

3. Many students had not taken CS 311 (e.g., by AP credit).

Statistical Analysis
The data on grades and learning style were analyzed using a linear regression model,

chosen over more sophisticated models due to the small sample size. The data were
plotted in all combinations of the CS courses with each of the four learning styles, giving
twelve plots, each only mildly linear. The grades for the second introductory CS class
were plotted against those of the functional language course, giving a more distinct
linear pattern.

C statistics were calculated for all possible combinations of independent variables in
two separate models (SAS notation) where learning style scores are RO (reflective
observation), CE (concrete experience), AC (abstract conceptualization), and AE (active
experimentation):

1. CS312 = RO CE AC AE CS316

2. CS316 = RO CE AC AE CS312.

The C statistic, a function of the error in the model, provides a way to compare
different models in terms of their explanatory value, taking into consideration how
many variables are in the model. More variables on the right-hand side may help the
model explain more variance in the left-hand variable, but some do little to help and
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should be dropped. In general, the simpler the model, the better (Bowerman and
O'Connell, 1990).

For the first model, the combination of independent variables with the optimal
combination of R2 and the C statistic was RO and CS 316. In the second model, the best
combination was CE and CS 312. Stepwise regressions yielded similar results, although
in model 1, RO did not meet the entry significance level. Stepwise regression involves
performing several regression models in succession with different sets of independent
variables; variables are added if they add significantly to the model and variables are
removed that do not meet the significance level. The final model from a stepwise
regression is the "best" combination of independent variables, based on how much they
contribute to the overall model (Bowerman and O'Connell, 1990).

Regular linear regressions were run on the independent variables suggested by the
above tests. In both cases the overall models were statistically significant, with p-values
below .04. The p-values for t-tests for individual coefficients were higher, though; and
only the grades from CS 312 and CS 316 were significant at the .05 level. P-values
measure the probability that the statistics indicate that a variable or model is significant,
when it in fact is not significant. Lower p-values indicate increased confidence in the
model.

Models were run including all 5 independent variables plus interaction terms: the 6
possible combinations of pairs of learning style dimensions (RO, CE, AC, AE). The
overall significance of the models dropped considerably; in fact, both models had p-
values for the overall F-test above .5. Partial F-tests were done for both to see if the
interactions and three additional learning style dimensions should be dropped. In all
four cases, the answer was a resounding yes, with p-values above .8.

More tests were run with the earlier models that included two independent variables.
Residual plots showed appropriately distributions, although in one case (RESID1 *RO)
the variance was not constant. Residual plots show the error values (differences between
actual and predicted values for the independent variable) for each model. There should
be no discernible pattern in the errors, since otherwise, that would mean there were
more that is not explained by our model. The stem-and-leaf plot, box plot, and normal
probability plot do not indicate any violations of the regression assumptions for model 1.
However, the stem-and-leaf plot for model 2 is top-heavy. The box plots appear
reasonable, though. The above three plots are used to check whether the data are
normally distributed, which is one of the predictions of the regression model
(Bowerman and O'Connell, 1990).

Based upon these analyses, the best two models appear to be (in SAS notation):
1. CS312 = RO CS316

2. CS316 = CE CS312.

Within this model, the results indicate that grades in one course are the best single
predictor of performance in the other. However, there may be an additional effect from
learning style. Though it is not nearly as strong, scores on two of the dimensions of the
Kolb LSI predict some of the variance in grades in CS 312 and CS 316.

Conclusions

General ability in programming proved much stronger an effect than learning style on
success in programming courses, regardless of the language. Yet learning style did
contribute some predictive value to the models. Also, different learning styles were more
significant predictors in one language than another; high scores on the RO (reflective-
observation) scale of the Kolb were associated with higher grades in CS 312. The RO
scale measures a person's tendency to patiently observe and act carefully; this might be
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associated with success in C since the syntax of C programs is complex and coding
requires careful work (and patience).

The CE (concrete-experience) scale was associated with skill in CS 316. People with
high scores on CE tend to be open-minded and adaptable to change. Since programming
in Scheme is so different from the procedural languages many students first encounter,
that openness may help with readily accepting a new paradigm. In addition, functional
languages are also called applicative languages, since functions are directly applied to
data. This directness may help to illuminate the structure particularly well for someone
who has high scores on the CE scale of the Kolb.

We see here, then, results that differ from those that were earlier anticipated along the
lines of Wu's study (1993). Here success in the procedural language C was associated
with a RO cognitive style, not with a concrete style. Indeed, in the present study, a CE
cognitive style was correlated with success in the functional language! Perhaps the
comprehensive rigors of learning an entire language are not at all comparable to
learning a specific aspect of that (or any) languagee.g., recursion, as in Wu's study.
The above speculative comments may serve to illuminate these points; but certainly we
can see the desirability of further research into these relationships.

That a learning style effect is difficult to separate from general ability should not leave
us discouraged. The fact that such an effect exists should motivate more research into
this question, since it provides a possible way to make CS education more effective for
novices.

As this is a relatively unexplored area, there is ample room for more studies.
Acknowledging limitations in the present study and suggesting alternate strategies
should prove useful to those planning further work in this arena. One limitation of this
study was the lack of a large student pool. A larger-scale study would be necessary
before many conclusions could be drawn. Or, especially given a small N, it would be
desirable to determine the subjects' subjective assessment or preference for
programming language in addition to the objective measure of grades. And
programming paradigms other than imperative and functional should be considered in
future studies.

An orientation toward expert subjects rather than the novices here might be especially
fruitful: bypass students altogether and test faculty. Ideally students would be studied
who, with no prior programming experience, would see either an imperative or a
functional language as their first experience. Such are increasingly difficult to find as many
college students have had prior programming (usually with an imperative language).
Many faculty, on the other hand, who teach programming classes have strong
preferences for which language is "best" as a first one for novices. Testing learning styles
and relating them to preferred languages might yield interesting results. Presumably the
bias inherent in their own first exposure would be eliminated or reduced by years of
experience and consideration given to this issue, especially if the subjects had taught
both styles. Then, of course, the study would not be about which is more suitable for
students based on students' cognitive style, but rather, what do experts tend to
recommend based on their own cognitive style? And ... do the same cognitive styles
influence novices and experts in the same ways?
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